
NetApp Jenkins Plugin Documentation
Release 2.0

Akshay Patil

Aug 22, 2017





Contents

1 Contents 3
1.1 Pre-Requisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Predefined Pipelines and Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Pre-Packaged Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

i



ii



NetApp Jenkins Plugin Documentation, Release 2.0

The NetApp-Jenkins integration is an end-to-end framework from creating code repository until zipping the successful
builds in the artifactory location. All these processes run as Docker-containers and use persistent NetApp storage with
NetApp Docker volume plugin (nDVP).

The advantage of running CI process on NetApp for Business or Asset owner are –

1. Improve Developer productivity

(a) NetApp FlexClones allows to cut down the user workspace provisioning from hours and days to few
seconds.

(b) Each user workspace is pre-packaged with the source code and the dependencies like libraries, tools,
compilers and config files for developers start working quickly. There are no long wait times for
developers to prepare their workspaces.

2. Reduce build time

(a) NetApp Snapshots for the CI data volumes allows developers to run incremental builds over full
builds. Full builds are time consuming.

(b) Incremental builds allow developers to test the changes quickly in their workspaces and provides
consistency to the builds with reduced build times.

3. Reduce infrastructure costs

(a) NetApp data volumes also known as FlexVols, Snapshots and FlexClones are thin provisioned. This
allows to provision more build workloads with less storage footprint and optimize compute and net-
work resources for parallel builds. Thus providing an improved Return of Investment (ROI) by doing
“more with less” in the entire build farm.

(b) Data Compaction and De-duplication for the source code repositories and the software builds during
the CI process on NetApp provides a high degree of storage space efficiency. Data compression of
build artifacts in the binary repository lso provides space savings.

Contents 1



NetApp Jenkins Plugin Documentation, Release 2.0

2 Contents



CHAPTER 1

Contents

Pre-Requisites

• 1 running instance of NetApp Service Level Manager(NSLM).

• Docker Engine 1.12.5. installation on atleast 2 Linux Nodes

• NetAppDVP 1.13. installed and configured on all Linux Nodes with Docker-Engine

• 1 running instance of jfroginstall

Note:

• All validation in this solution has been done with RHEL 7.3, the source files can run on any flavour of Linux.

• Any number of nodes can be added in the swarm cluster, for demo purposes 2 node cluster considered in this
validation.

• Keep the following storage details handy:

1. Management LIF IP: ________________________

2. Data LIF IP: ________________________

3. Storage Virtual Machine(SVM) name: ________________________

4. SVM Username: ________________________

5. SVM Password: ________________________

6. Aggregate Name: ________________________

• The tools in this framework use following ports, make sure following are open within your firewall:

3

https://mysupport.netapp.com/documentation/docweb/index.html?productID=62414&language=en-US
https://docs.docker.com/cs-engine/1.12/
http://netappdvp.readthedocs.io/en/latest/install/index.html


NetApp Jenkins Plugin Documentation, Release 2.0

Protocol Port Used By
TCP 2377 Docker Swarm
TCP and UDP 7946 Docker Swarm
TCP and UDP 4789 Docker Swarm
TCP 80 GitLab
TCP 1024 Jenkins
TCP 50000 Jenkins Slaves

Configuration

1. Adding ONTAP Storage system in NetApp Service Level Manager

1.1) Open a web browser and enter the URL “https://xx.xx.xx.xx:8443/admin/” where xx.xx.xx.xx is
the IP address of the host machine where NetApp SLM is installed.

1.2) Enter your NSLM username and password when prompted.

1.3) Click on +Add and enter the details of your ONTAP Cluster.

1.4) Verify that the instance of ONTAP is added as shown in the screenshot.

2. Building a docker image for your environment

2.1) Get the source code from NetApp Jenkins Framework Github Repo.

2.2) Edit the /Jenkins_Master/ontap-nas.json file with appropiate values.

images/ontapnas.png

2.3) After the ontap-nas.json file is configured, build the Jenkins Master docker image using follow-
ing command:

>>docker build -t image_name:tag

2.4) Once the build is complete, push the Docker image to a registry using following command:

4 Chapter 1. Contents

https://xx.xx.xx.xx:8443/admin/
https://github.com/NetApp/Jenkins-Plugin


NetApp Jenkins Plugin Documentation, Release 2.0

>>docker push registry/imagename:tag

3. Setting up a Docker Swarm Cluster 3.1)Login into a Linux Node with Docker-Engine installed.

3.2)Initialize Swarm cluster using following command:

>>docker swarm init

Note:

• If there are multiple ethernet ports(eth0...ethn) configured on the host then “–advertise-addr” <IP-
Address of Swarm Host> argument needs to be provided with swarm initialization.

• This node will act as a Swarm manager and all swarm commands run only on the manager node.

3.3) Copy the swarm token generated by the aboce command and run it on a new Linux node. This new
Linux node will join the swarm cluster as a swarm worker node.

Note: Any number of hosts can be added in your swarm cluster, this validation demonstrates use of a 2
node swarm cluster.

3.4)Verify the status of our Swarm cluster by running the command:

>>docker node ls

Both the nodes should be visible in the node list

4. Running NetAppDVP on the Docker-Engine Hosts 4.1) Make sure NetAppDVP is running on all the Linux
nodes added in swarm cluster. A netappdvp process should be seen on the host

1.2. Configuration 5



NetApp Jenkins Plugin Documentation, Release 2.0

>>ps ax | grep netappdvp

5. Start the NetApp-Jenkins Docker Service 5.1) Start the NetApp-Jenkins-Master Docker Service using fol-
lowing command. Use the docker image built in step 3

>>docker service create --replicas 1
--mount "type=bind,source=/var/run/docker.sock,target=/var/run/docker.sock"
--constraint 'node.role==manager' --restart-condition on-failure
--mount "type=volume,source=Jenkins_home,volume-driver=netapp,target=/var/
→˓jenkins_home"
--publish 50000:50000
--publish 1024:8080
--name jenkins registry/imagename:tag

5.2)This command will create a docker service of a Jenkins instance with the Jenkins_Home directory
mounted on a NetApp volume.To check if the Service is created successfully use the following command

>>docker service ps jenkins

6. Access Jenkins UI from a Web browser 6.1) Once the Jenkins Docker Service is up, Navigate to the URL:
http://xx.xx.xx.xx:1024/ ,where xx.xx.xx.xx is Jenkins URL

7. Setting up environment variables and JFrog Artifactory in Jenkins 7.1) In Jenkins UI navigate to Manage
Jenkins>Configure System (http://xx.xx.xx.xx:1024/configure), where xx.xx.xx.xx is Jenkins URL

7.2) Configure the following environment variables:

6 Chapter 1. Contents

http://xx.xx.xx.xx:1024/configure


NetApp Jenkins Plugin Documentation, Release 2.0

1.2. Configuration 7



NetApp Jenkins Plugin Documentation, Release 2.0

Variable
Name

Default Value What it does?

APISERVER xx.xx.xx.xx:8443 URL of you NetApp Service Level
Manager Installation

APIUSER admin Username of NSLM installation
APIPASS Password@123 Password of NSLM installation
SLAVE devopsnetapponaws/netapp-

jenkins_slave:autodiscover
Jenkins Slave Docker image name

GITLABIM-
AGE

devopsnetapponaws/netapp-
jenkins_gitlab

SCM Docker Image name

VOLSIZE 4096 Size of volumes created in MB’s
VS lab2 Storage Tenant to create volumes
REPOUSER-
NAME

admin Username for private docker registry

REPOPASS-
WORD

password Password for private docker registry

ART_URL xx.xx.xx.xx:5001 URL of your private registry(IP:PORT)
ART_REPO docker-dev Repository name to push docker images

and zip files

Sample configuration:

8. Setting Up Artifactory 8.1) In Jenkins UI navigate to Manage Jenkins>Configure System (http://xx.xx.xx.xx:
1024/configure) , where xx.xx.xx.xx is Jenkins URL

8.2) Scroll down until the Artifactory section

8 Chapter 1. Contents

mailto:Password@123
http://xx.xx.xx.xx:1024/configure
http://xx.xx.xx.xx:1024/configure


NetApp Jenkins Plugin Documentation, Release 2.0

8.3) Enter your SERVER ID (eg: 1)

8.4) Enter your Artifactory Server Link

8.5) Click Save

Note: Check if the Jenkins URL in Jenkins Location tab maps to the URL of the Linux node running the
Jenkins Master Docker Service.

9. Configure Maven Home in Jenkins 9.1) In the Jenkins Slave Image we already have installed maven at the
default location i.e /usr/share/maven

Note: As part of this validation, a Maven sample project is used, If the production environment has any
other type of build, that needs to be configured here.

9.2) Navigate to Manage Jenkins > Global Tool Configuration (http://xx.xx.xx.xx:1024/configureTools/) ,
where xx.xx.xx.xx is Jenkins URL

9.3) Scroll down till the Maven Section

9.4) Click Add Maven

9.5) Enter Maven Installation name (eg: Maven)

9.6) Enter Maven Path as /usr/share/maven , as shown in below screenshot

10. Approving the NetApp Groovy Pipelines 10.1) In Jenkins UI navigate to Manage Jenkins>In-Process Script
Approval (http://xx.xx.xx.xx:1024/configure) , where xx.xx.xx.xx is Jenkins URL

10.2) As per the latest Jenkins security update, any external script in Jenkins needs to be approved. Click
Approve for the 4 NetApp Groovy Scripts

1.2. Configuration 9

http://xx.xx.xx.xx:1024/configureTools/
http://xx.xx.xx.xx:1024/configure


NetApp Jenkins Plugin Documentation, Release 2.0

10 Chapter 1. Contents



NetApp Jenkins Plugin Documentation, Release 2.0

Workflow

The CI workflow is defined as following stages in this solution:

images/workflow.png

1. Source Code Management

2. Continuous Integration

• Continous Integretion Environment Setup

• Continuous Integration Build Setup

3. Developer Workspace Creation

4. Build Artifact Management

Predefined Pipelines and Jobs

As an example, following nomenclature for the Jenkins job names is used :

Job Task Default Name used:
SCM Setup JFrog_OSS_Repo
CI Environment Setup JFrog_2017_1
CI Build JFrog_CI_Build
Developer Workspace Name Dev1_JFrog_2017_1
Build Artifact Container Name Build_Artifacts_JFrog_2017

For purpose of explaining pipelines in this documentation, sample opensource scripts from JFrog are used
to demonstrate a CI workflow.

https://github.com/JFrogDev/project-examples

This framework has following prefdefined pipelines and preconfigured jobs:

1. Predefined Pipelines

1.3. Workflow 11



NetApp Jenkins Plugin Documentation, Release 2.0

Pipelines Tasks Jobs Included in the
Pipeline

Source
Code
Manage-
ment

1)Spin up a GitLab Docker Container JFrog_OSS_Repo

Continous
Integre-
tion

1)Get the Local Git Repo URL 2)Spin up Container where
CI Builds will Run 3)Pull the code from Gitlab to this
container 4)Start the CI Build 5)Automatic Snapshot
Creation for Every successful build.

JFrog_2017_1 Cre-
ate_Build_Checkpoints
List_Build_Checkpoints

Developer
Workspace

1)Create prepackaged workspaces (containers) from
snapshots

UserWorkspaces
SCM_Checkpoints
List_SCM_Checkpoints

Build_Artifact_Management1)Spin up a container to archive builds 2)Zip a Build
Environment and push it to artifactory 3)Create a Docker
image of Build environment and push it to a repo

Build_Artifacts_JFrog_2017
Zip_And_Copy
Create_Docker_Image

2. Preconfigured Jobs

12 Chapter 1. Contents



NetApp Jenkins Plugin Documentation, Release 2.0

Job Name Tasks Scripts Included
JFrog_OSS_Repo 1)Create 3 NetApp Volumes

2)Spin up a GitLab Container
with its Logs,Data and config-
uration stored on NetApp Vol-
umes

scmconfig2.py

JFrog_2017_1 1)Create a NetApp Volume
2)Create a Docker Service
3)Mount a NetApp Volume
inside the Docker Service

CI_dev_bracbh_create2.py
Jenkins_slave_create2.py

UserWorkspace 1)Create a FlexClone from
a Build Snapshot 2)Create a
Docker Service 3)Mount Ne-
tApp Clone inside the Docker
Service

userworkspace_creation1.py
Jenkins_slave_create2.py

Build_Artifacts_JFrog2017 1)Create a NetApp volume to
store zip archives 2)Zip a Build
Environment and push it to arti-
factory

Volume_create.py
Build_Artifact_create.py

ZipandCopy This jobs should always run af-
ter the Artifacts volume is cre-
ated and should always run on a
Jenkins Slave
1)Zip the contents of a clone
volume 2)Move this zip to Ar-
tifact Volume 3)Push the zip to
Artifactory 4)Delete the clone

build_artifact_exec.py
clone_purge.py

CreateDockerImage This job should always run on
Jenkins Slave
1)Get container id from Docker
Service Name 2)Commit the
container 3)Build Docker Im-
age of the container 4)Push the
image to a private repo

dockerimagecreate.py

CreateBuildCheckpoints 1)Create a NetApp Snapshot
2)Tag build name and number
to snapshot name 3)Write snap-
shot name to properties file so
that extensible choice parameter
plugin can read and display it in
a dropdown menu

snapshot_create_write.py

SCMCheckpoints This job is supposed to run by
a Git WebHook for successful
push
1)Tag a SHA number to name
of a Snapshot 2)Create a netapp
snapshot

scmcheckpoint_create.py

List_Build_Checkpoints 1)Display Snapshots for CI
Build Volume

snap_show.py

List_SCM_Checkpoints 1)Display Snapshots for SCM
Volume

snap_show.py

Purge Policy This job is supposed to run on a
cron schedule

1. Find Free and Busy Snap-
shots

2. Delete Free snapshots
above a predefined
number

3. If Number of busy snap-
shots exceed a certain pre-
defined value display and
alert

purge.py

1.4. Predefined Pipelines and Jobs 13



NetApp Jenkins Plugin Documentation, Release 2.0

1. Source Code Management Setup

This pipeline will setup a GitLab container which acts as a SCM tool in this solution.

1.1) Click on the Source_Code_Management > Build Now

1.2) A Jenkins Stage named GIT Repository is started when the Source_Code_Management pipeline is
built.

1.3) The GitLab Container can be seen on the Linux Host by running a “docker ps” command.:

>> docker ps

Note: It takes about 2-5 minutes for GitLab to start.

14 Chapter 1. Contents



NetApp Jenkins Plugin Documentation, Release 2.0

1.4) Configuring Gitlab Navigate to http://<<RHEL-VM-IP>>/ in your browser and and set a root pass-
word for GitLab

images/gitlab1.png

1.5) After you set a password, Login into Gitlab using the recently set password on the same page.

images/gitlablogin.png

1.6) Once logged into GitLab, Create a New Project

images/gitlabnewproject.png

1.7) Import code repo into the local GitLab instance. For this validation Sample Hello world codes from
JFrog’s GitHub Repo are used:

https://github.com/JFrogDev/project-examples.git

1.8) When the code import is complete, Note the Local Git URL

1.9) Adding a WebHook for automatic SCM Checkpoint Creation.

• To add a webhook in Jenkins, Click the Settings button at right corner of the GitLab project and
select Integrations

• Add a the following Jenkins Job WebHook URL

http://<<Jenkins-Master-IP>>:1024/job/SCMCheckpoints/
→˓buildWithParameters?token=secret&VOL=<<SCM_Project_Name>>

• Add the Secret Token as “secret”

• Click Add WebHook

• This WebHook will automatically trigger a Jenkins Job(SCMCheckpoints) to create snapshot
for every git push made in the SCM

Note: If you change your SCM Job name in Jenkins , use the same job name in this WebHook, as
this will trigger a snapshot of your SCM volume.

1.4. Predefined Pipelines and Jobs 15

http:/


NetApp Jenkins Plugin Documentation, Release 2.0

16 Chapter 1. Contents



NetApp Jenkins Plugin Documentation, Release 2.0

Navigate to SCMCheckpoints job on Jenkins UI . (http://xx.xx.xx.xx:1024/view/All/job/
SCMCheckpoints/configure) , where xx.xx.xx.xx is the IP of your RHEL VM running the Jenk-
ins OSS Container.

The build trigger in Authentication Token field should correspond to secret key set in GitLab Web-
Hook

Make sure the SCM Section has the Git URL of the project as it collects the SHA ID from here.

2. CI Environment Setup

This pipeline will build a Continuous Integration Environment where a CI Build will run for the project

2.1) The Continuous Integration (Integrated Builds) stage will build a Docker Container named
JFrog_2017_1 which acts as our CI-Environment with a NetApp Volume named JFrog_2017_1
mounted on it.

2.2) The CI Environment runs as a docker service on one of the swarm node. This can be
verified by listing all docekr services on Swarm Manager node.:

>>docker service ls

2.3) To check where the service is running , use the command

>>docker service ps <<CI-Environment-Job-Name>

2.4) A NetApp volume mount can be verified on the linux host by going inside the context of
the container

1.4. Predefined Pipelines and Jobs 17

http://xx.xx.xx.xx:1024/view/All/job/SCMCheckpoints/configure
http://xx.xx.xx.xx:1024/view/All/job/SCMCheckpoints/configure


NetApp Jenkins Plugin Documentation, Release 2.0

18 Chapter 1. Contents



NetApp Jenkins Plugin Documentation, Release 2.0

>>docker ps
>>docker exec -it <<Container-ID>> bash
>>df

3. CI Build Setup

3.1) Create a Maven Job named “JFrog_CI_Build” in Jenkins by going to New Item > Create Maven Job

Note: For this validation a sample Hello-World maven code from JFrog_Repo is used.

3.2) Configuring the JFrog_CI_Build Maven Job

Following sections need to be configured in the Maven Job:

• Restrict the project to run in the previously created CI-Environment Enter the label :
“JFrog_2017_1”

• Add Local Gitlab URL in the SCM section

• In Build Triggers select the option POLL SCM and set per minute polling schedule:

* * * * *

• In Build Environment Section, select Resolve Artifacts from Artifactory. Click Refresh
Repositories Select the repositories to resolve the artifacts from Artifactory

• In the Build Section, enter relative path of the pom.xml file and set the install goal

ROOT POM: “maven-example/pom.xml”
Goals: “install -DskipTests”

1.4. Predefined Pipelines and Jobs 19



NetApp Jenkins Plugin Documentation, Release 2.0

20 Chapter 1. Contents



NetApp Jenkins Plugin Documentation, Release 2.0

• Select Use private Maven Repository checkbox and point it to use Local to Workspace.
This ensures all the artifacts stay on a NetApp workspace.

• Click the Advanced tab and select use Custom Workspace, Enter the workspace as:

/workspace/<<CI-Environment-Name>>

This ensures that the project is being built on a NetApp workspace.

Note:

• Fill in these values as per your environment/code structure

• The custom workspace field should be in the format “/workspace/ <<Your-CI-
Environment-Job-Name>>

3.3) Configuring automatic creation of snapshots of successful builds.

• Navigate to All Jenkins Jobs

• Select the job “Create_Build_Checkpoints”

• Select Configure

• Configure the folloeing sections of CreateBuildCheckpoints job:

– In the general section, Select this project is parameterized option and set the default
value as your <<CI-Environment-Name>>

– In the Build Trigger section, Enter the name of CI Build Name. Select trigger only if
build is stable.

Note: Note on Multiple CI Builds

4. Developer Workspaces

This Pipeline Job will Create User Workspaces for Private Builds on NetApp FlexClones

1.4. Predefined Pipelines and Jobs 21



NetApp Jenkins Plugin Documentation, Release 2.0

22 Chapter 1. Contents



NetApp Jenkins Plugin Documentation, Release 2.0

1.4. Predefined Pipelines and Jobs 23



NetApp Jenkins Plugin Documentation, Release 2.0

4.1) Select Developer Workspace Pipeline and Click Build Now

4.2) This pipeline requires following inputs:

Input Default What it does
UID 301 UID for the Developer
GID 300 GID for the Developer
CI Dev Branch Name JFrog_2017_1 Name of CI Environment
Workspace Name Dev1 Name of workspace to create

4.3) Click Proceed and Hover over the Pipeline stage to select build checkpoint to create a workspace and
click Proceed.

4.4) A new docker service with a Private workspace for the Developer will be available on the Linux host.
This can be checked by running following command on the host.

>>docker service ls
>>docker service ps <<Service_Name>>

4.5) The contents of this docker service can be verified by going inside the context of the container.

>> docker exec -it <<Service Container ID>> bash

4.6) All the source files and artifacts will be present at

/workspace/<<Developer-Workspace-Name>>

4.7) Developer can make changes to the code and then commit them.

• Set the git username and email for the Developer.

24 Chapter 1. Contents



NetApp Jenkins Plugin Documentation, Release 2.0

1.4. Predefined Pipelines and Jobs 25



NetApp Jenkins Plugin Documentation, Release 2.0

26 Chapter 1. Contents



NetApp Jenkins Plugin Documentation, Release 2.0

>> git config -global user.name “Dev1”

>> git config -global user.email “Dev1@netapp.com”

4.8) For this validation we will make changes to the master branch

>> git checkout master

4.9) As a example, a small Hello World to Hello NetApp code change is shown as example.

>> vi maven-example/multi3/src/main/java/artifactory/test/Multi3.java

4.10) Commit the changes.:

>> git commit -all

4.11) If the changes pass the pre-push hook, then developer can go ahead and push the code to SCM.

4.12) This recent push will reflect in GitLab UI.

>> http://<<Jenkins-Host-IP/>>

4.13) After the Git Push, the CI job will be triggered automatically as there was a change in SCM and the
polling is done for every minute.

5. Build Artifact Management Pipeline

This pipeline will:

1. Create a Build Artifact Container

2. Create Zip of all the volume contents

1.4. Predefined Pipelines and Jobs 27



NetApp Jenkins Plugin Documentation, Release 2.0

28 Chapter 1. Contents



NetApp Jenkins Plugin Documentation, Release 2.0

3. Create Docker Image of running CI Environment

5.1) Select Build Artifact Management Pipeline and click build now

5.2) This pipeline requires following inputs:

Input Default What it does
CI Dev Branch to be
Artifact

JFrog_2017_1 Name of CI Build Environment to Artifact

Build Artifact
Container

Build_Artifact_JFrog_2017_1 This container will store

Name of Zip File to
Create

JFrog_2017_1.zip A Zip file containing all contents of volumes
is created.

Docker Image Name
to Create

<<Artifactory-
IP:PORT>>/image1:version1

Creates docker image of build environment
with this name.

Checkpoint Select from a DropDown Creates a temporary clone from this
checkpoint.

5.3) Build the Pipeline

5.4) If the build is successful, a docker image will be pushed to the docker-dev repo in Artifactory.

5.5) To restore your Build Environment using the docker image, login to any linux host and use the following
command

docker run -t -d -e masterip=http://<<jenkins-master-ip>>:1024 -e
→˓slavename=JFrog_2017_1_copy --name JFrog_2017_1_copy <<Artifactory-Server-
→˓URL:Port>>/image1:version1

5.6) All the build data is stored as a timestamped zip file in Artifactory in the same docker repo. This zip can be
downloaded/curl/wget to your backed up container.

Pre-Packaged Plugins

• The NetApp Jenkins Master Docker Image is pre-packaged with following Jenkins Plugins:

1. Swarm. [2.1] This plugin enables slaves to auto-discover nearby Jenkins master and join it automatically

2. Pipeline. [2.5] Pipeline plugin(workflow-aggregator) is a suite of plugins used create Pipeline Jobs in
Jenkins

3. Git. [2.2.0] Git plugin is used to conduct GIT operations with Jenkins

1.5. Pre-Packaged Plugins 29

https://wiki.jenkins-ci.org/display/JENKINS/Swarm+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Pipeline+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin


NetApp Jenkins Plugin Documentation, Release 2.0

30 Chapter 1. Contents



NetApp Jenkins Plugin Documentation, Release 2.0

4. Extended Choice Parameter Plugin. :0.76 This plugin provides an option of having DropDown input
sections in pipelines

5. Artifactory. :2.12.1 Artifactory plugin resolves the build artifacts from local instance of JFrog Artifactory

6. MultiJob Plugin. :1.24 MultiJob plugin lets you have multiple types of job configurations in a single job

• To Bundle more plugins in the Jenkins-Master Docker image :-

1. Open the Dockerfile in any text editor

2. Find the line with plugin install script

RUN /usr/local/bin/install-plugins.sh workflow-aggregator:2.5

3. Append your plugin-id:plugin-version to the the above line, e.g if you wish to package the blueocean
plugin in Jenkins Master

RUN /usr/local/bin/install-plugins.sh workflow-aggregator:2.5 blueocean:1.
→˓0

4. Save the Dockerfile

5. Build a new Docker image.

Support

All the support for this plugin is provided via Slack in the #ci-cd channel.

1.6. Support 31

https://wiki.jenkins-ci.org/display/JENKINS/Extended+Choice+Parameter+plugin
https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Multijob+Plugin
http://netapp.io/slack

	Contents
	Pre-Requisites
	Configuration
	Workflow
	Predefined Pipelines and Jobs
	Pre-Packaged Plugins
	Support


